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1 Introduction

Over the last years, network analysis has become an active topic of research in time series

econometrics, with numerous applications in macroeconomics and finance. Example of con-

tributions in the literature include, inter alia, Billio, Getmansky, Lo, and Pellizzon (2012),

Diebold and Yılmaz (2014, 2015), Hautsch, Schaumburg, and Schienle (2014a,b) and Härdle,

Wang, and Yu (2016). In a nutshell, network analysis is concerned with representing the

interconnections of a large panel as a graph: the vertices of the graph represent the vari-

ables in the panel, and the presence of an edge between two vertices denotes the presence

of some appropriate measure of dependence between the two variables. From an economic

perspective, the interest on networks has been boosted by the research of, inter alia, Ace-

moglu, Carvalho, Ozdaglar, and Tahbaz-Salehi (2012), which shows that individual entities

can have a non negligible effect on the aggregate economy when the system has a high degree

of interconnectedness.

In this paper we propose network methodology for large panels of time series. We model

the panel as a Vector Autoregression (var). We work under the assumption that the var is

sparse, in the sense that the autoregressive matrices and the inverse covariance matrix of the

system innovations are assumed to be sparse. Notice that the notion of sparsity used in this

work is different from the one used in other papers such as Davis, Zang, and Zheng (2015),

Kock and Callot (2015), and Medeiros and Mendes (2016) where sparsity assumptions are

formulated for the autoregressive matrices only. Sparsity of the autoregressive matrices im-

plies sparsity of the multivariate Granger causality structure of the system whereas sparsity of

the inverse covariance matrix implies sparsity of the partial correlation structure (Dempster,

1972; Lauritzen, 1996).

Several network representations can be associated with a var system (Dahlhaus, 2000;

Eichler, 2007; Diebold and Yılmaz, 2014). In this work we focus on two representations that

are natural for the sparse var we work with. The first network representation consists of

representing the system as a mixed graph containing both directed and undirected edges:
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directed edges denote Granger causality linkages among time series while undirected edges

represent contemporaneous partial correlation linkages. The second network representation

we introduce is an undirected graph where edges denote long run partial correlation linkages

among time–series. Long run partial correlation is a partial correlation measure constructed

on the basis of the long run covariance matrix of the var. It synthesises simultaneously

lead/lag and contemporaneous dependence among time series and can be thought of as a

natural generalization for dependent data of the standard partial correlation model used in

the statistics graphical literature.

In order to estimate large sparse vars, we introduce a novel lasso-based algorithm. The

highlight of the procedure is that it simultaneously estimates the autoregressive matrices

as well as the entries of the concentration matrix, avoiding to split up the estimation of

the model parameters in two steps. The large sample properties of the proposed estimator

are analysed and we establish conditions for consistent selection and estimation of the var

parameters. The theory is derived in a high–dimensional setting, allowing the number of

series in the system to increase with the sample size. Specifically, the number of series is

allowed to be O(T ζ) for ζ > 0 where T denotes the sample size of the panel.

The network methodology we introduce in this work has highlights in terms of interpre-

tation and estimation. Understanding and synthesising the interdependence structure of a

large multivariate system can be a daunting task. The network representation of the panel

provides a more parsimonious synthesis of the data that can bring useful insights on their

underlying structure. From an estimation perspective, carrying out inference on the var

parameters can be challenging when the number of time series is large. The regularized es-

timation approach based on lasso put forward in this work can lead to substantial gains in

terms of estimation precision when the system is sparse and, ultimately, forecasting.

A natural application of network analysis techniques is the study of interdependence in

panels of volatility measures. Detecting the interconnectedness structure of volatility panels

is of interest to understand and monitor the risk transmission channels of these systems. See,
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for instance, the research of Diebold and Yılmaz (2014) on risk transmission in the 2007–2009

Great financial crisis or Engle, Gallo, and Velucchi (2012) in the 1997–1998 Asian financial

crisis. We use the methodology derived in this work to analyse a panel of volatility measures

for ninety US bluechips across different industry groups from January 2nd 2004 to December

31st 2015. An important feature of our application is that we study interconnectedness condi-

tional on a market wide and sector specific volatility factors. We show that after conditioning

on the factors the volatility panel has a sparse network structure capturing approximately

10% of the overall variability. The estimated networks connect the vast majority of the se-

ries in the panel and the interdependence is positive in the vast majority of cases. Results

show that the financial sector is the most interconnected industry in this sample period. In

particular, large financial institutions such as AIG, Bank of America and Citigroup are some

of the most interconnected entities in the panel. An out–of–sample forecasting exercise is

used to validate the methodology proposed in our work and shows that the sparse var model

improves predictive ability over a number of benchmarks.

Our work relates to different strands of literature. First, it is related to the econometric

literature on networks, which includes research by Billio et al. (2012), Diebold and Yılmaz

(2014, 2015), Hautsch et al. (2014a,b), Härdle et al. (2016). This paper is also related to

the literature on the estimation of sparse vars, see Davis et al. (2015), Kock and Callot

(2015), Medeiros and Mendes (2016), and, in a Bayesian setting, Ahelegbey, Billio, and

Casarin (2015). Our contribution also relates to the statistical literature on large dimensional

network estimation based on lasso techniques. Contributions in this area include, inter alia,

Meinshausen and Bühlmann (2006), Friedman, Hastie, and Tibshirani (2008), Peng, Wang,

Zhou, and Zhu (2009).

The paper is structured as follows. Section 2 introduces the model, the network def-

initions and the estimation strategy. Section 3 derives the large sample properties of the

estimator. Section 4 contains a simulation study that analyses the finite sample properties

of the procedure. Section 5 contains the empirical application. Concluding remarks follow
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in Section 6.

2 Methodology

2.1 Model

We consider a zero-mean stationary n-dimensional multivariate time series yt = (y1 t, . . . , yn t)
′

generated by a p-th order var

yt =

p∑
k=1

Akyt−k + εt, εt ∼ i.i.d.(0,C−1), (1)

where Ak and C are n × n matrices. Throughout the var is assumed to be stable and C

to be positive definite. Notice that for convenience the distribution of the innovation terms

is parametrized with the inverse covariance matrix C, also known as concentration matrix,

rather than the covariance. The (i, j)-th entries of the matrices Ak and C are denoted

respectively as ak ij and cij.

In this work we focus on the analysis of sparse var systems, in the sense that the au-

toregressive matrices Ak and the concentration matrix C are assumed to be sparse matrices.

More specific notions of sparsity are spelled out in Section 3, where precise assumptions are

required by the estimation theory to establish the results of interest. In general, the sparsity

assumption can be interpreted as a sparsity assumption on the lead/lag and contemporaneous

dependence structure of the system.

The standard notion of dynamic interdependence used for time series is Granger causality.

In this work we rely on a multivariate version of this concept. Formally, we say that yj t does

not Granger cause yi t if adding yj t as predictor does not improve the mean square forecast

error of yi t+k for any k > 0, that is

E[(yi t+k − E(yi t+k|{y1 t . . . yn t}))2] = E[(yi t+k − E(yi t+k|{y1 t . . . yn t} \ yj t))2]. (2)
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It is immediate to see that the Granger causality structure of the model is encoded in the

sparsity structure of the autoregressive matrices Ak. We have indeed that if ak ij = 0, for all

k, then yj t does not Granger cause yi t.

The classical measure of contemporaneous dependence used in the network literature is

partial correlation. In this paper we consider partial correlation between two series condi-

tional on the past realizations of the panel and contemporaneous realizations of the remaining

series. This is encoded in the partial correlation between var innovations, which is defined

as

ρij = Cor(εi t, εj t|{εk t : k 6= i, j}). (3)

It is well known that partial correlations are related to the entries cij of the concentration

matrix C by means of the relation (Dempster, 1972)

ρij = − cij√
ciicjj

. (4)

Thus, the contemporaneous dependence sparsity structure is embedded in the sparsity struc-

ture of the concentration matrix C. Indeed, if cij = 0, then series i and j are contemporane-

ously uncorrelated conditional on all other series in the system.

Networks are a useful tool to represent the interdependence structure of the time series

in the panel yt. A network is defined as a graph N = (V , E) where V is the set of vertices

and E is the set of edges. The set of vertices V is {1, ..., n} where each element corresponds

to a component of yt, while the set of edges E is a subset of V × V such that the pair (i, j)

is in E if and only if the components i and j are linked by an edge.

Several network definitions have been proposed for var models. In this work we introduce

two network definitions that are natural for the sparse var model we focus on.

A natural representation of the sparse var model we work with in this paper is based on

the union of two graphs: the first graph contains directed edges denoting Granger causality

linkages among time series, while the second graph contains undirected edges representing
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contemporaneous partial correlation linkages. We label the two networks respectively as

the Granger and contemporaneous networks. The Granger network is defined as a directed

network NG = (V , EG) where the presence of an edge from i to j denotes that i Granger

causes j in the sense of (2), that is

EG = {(i, j) ∈ V × V : ak ij 6= 0, for at least one k ∈ {1, ..., p}} . (5)

The contemporaneous network is defined as an undirected network NC = (V , EC) where an

edge between i and j denotes that i is partially correlated to j, that is

EC =
{

(i, j) ∈ V × V : ρij 6= 0
}
. (6)

An alternative way to represent the properties of the process consists of simultaneously

summarising the lead/lag and contemporaneous information of the system by introducing a

partial correlation measure based on the long run covariance matrix of the process. This idea

is inspired by the hac literature (see Newey and West, 1987; Andrews and Monahan, 1992;

Den Haan and Levin, 1996). The long run covariance matrix of the process yt can be defined

as the covariance of the aggregated process:

ΣL = lim
M→∞

1

M
Cov

(
M∑
t=1

yt,
M∑
t=1

yt

)
,

assuming the limit exists. Equivalently, the long run covariance is defined in terms of the

sum of all autocovariance functions of the process, that is the zero frequency spectral density

matrix, which is given by

ΣL =
+∞∑

h=−∞

E[yty
′
t−h],

which shows how ΣL synthesises the linear dependences of yt at every lead and lag. Note

that since the var is assumed to be stationary the sum above is well defined. As it is well
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known, in the case of a var model the long run covariance is given by

ΣL =

(
I−

p∑
k=1

Ak

)−1

C

(
I−

p∑
k=1

A′k

)−1

.

We propose a network definition based on the partial correlations constructed on the basis

of the long run concentration matrix which is defined as

KL = Σ−1
L =

(
I−

p∑
k=1

Ak

)′
C

(
I−

p∑
k=1

Ak

)
.

This is also known as the zero-frequency partial spectral coherence (Dahlhaus, 2000; Davis

et al., 2015). Notice that the expression of KL is factorized in a sandwich form determined

by the term I−
∑p

k=1 Ak, which captures long run dynamic relations of the system, and the

term C, which accounts for the contemporaneous dependence of the system innovations. We

can then express long run partial correlation coefficient for series i and j as a function of the

entries kL ij of the long run concentration matrix KL

ρijL =
−kL ij√
kL iikL jj

.

The long run partial correlation network is then defined as a undirected networkNL = (V , EL)

where the set of edges EL is defined as

EL =
{

(i, j) ∈ V × V : ρijL 6= 0
}
. (7)

A number of comments on the model and network definitions we propose are in order.

First, this work assumes that the panel has a sparse dependence structure. In practice,

this assumption can be quite restrictive. An important case in which the assumption of

sparsity is violated, is when the components of the panel are a function of a set of common

factors (Forni, Hallin, Lippi, and Reichlin, 2000; Stock and Watson, 2002a,b; Bai, 2003). It is
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straightforward to see that common factors induce a fully interconnected network structure

among the variables in the panel.1 In these cases the influence of the common factors ought

to be filtered out before carrying out network analysis. Generally speaking, we view network

analysis as a complement of factor analysis for the purpose of empirical applications (see for

example the empirical results in De Mol, Giannone, and Reichlin, 2008 for a justification of

this approach).

An important difference between the network modelling approached proposed here and

other contributions in the literature is that we focus on representing the partial dependence

structure of the panel. On the other hand, the contributions of, inter alia, Billio et al.

(2012) and Diebold and Yılmaz (2014) propose network definitions that measure the overall

degree of dependence between series. The advantage of the approach proposed here is that

it is robust to spurious correlation effects among the variables in the system. Moreover, the

network definitions we propose can be seen as natural extension for time series data of the

popular partial correlation network models used in statistics.

2.2 Estimation

We are interested in detecting and estimating the non–zero entries of the autoregressive

matrices Ak and the concentration matrix C. A simple estimation approach for the sparse

var would consists of using lasso regression to estimate the autoregressive matrices Ak (as

for example in Kock and Callot, 2015), and then using a lasso procedure on the residuals

to estimate the concentration matrix C (as for example in Friedman et al., 2008; Peng

et al., 2009). The analysis of properties of the second step estimator is however challenging.

Moreover, the rate of convergence of the estimator of the concentration matrix C would

1Consider an n–dimensional panel of time series yit generated by a one factor model

yit = βift + εit,

where ft and εit are independent normals with zero mean and unit variance and εi t and εj t are independent
for each i 6= j . Then the concentration matrix of the system is K = In− 1

1+β′βββ
′, where In is the identity

matrix of size n × n and β is a n × 1 vector of factor loadings βi. If the vector of factor loading does not
contain zero entries then K is not sparse.
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depend on the rate of convergence of the estimator of the autoregressive matrices Ak.
2 In

this work we propose an estimation approach that avoids these hurdles by estimating both

sets of parameters jointly.

For ease of notation, we re-parametrize the var as a function of: (i) the coefficients αijk

contained in an n2p-dimensional vector α which correspond to the autoregressive coefficients

ak ij in (1), (ii) the partial correlations ρij contained in an n(n − 1)/2-dimensional vector

ρ and defined in (3), and (iii) the coefficients cii contained in an n-dimensional vector c

which correspond to the diagonal of the concentration matrix C. Then, in scalar notation

the parameters of our model are given by the var equations

yi t =

p∑
k=1

n∑
j=1

αijk yj t−k + εi t, i = 1, . . . , n, (8)

and the contemporaneous equations (see Peng et al., 2009)

εi t =
n∑
h=1
h6=i

ρih
√
chh
cii
εh t + ui t, i = 1, . . . , n, (9)

where ui t is an error term uncorrelated with εh t for i 6= h.

In this section we define a novel lasso based estimator for the parameters of (8) and

(9). We call the estimation algorithm nets (Network Estimator for Time Series) and we

describe it in detail in the next section. The main feature of the proposed procedure is that

it estimates the autoregressive parameters, α, and partial correlations, ρ, simultaneously,

conditional on a pilot estimator of c.

Consider the following regression representation of yi t as a function of the lags of all series

as well as the contemporaneous realizations of all other series in the panel, that is

yi t =

p∑
k=1

n∑
j=1

βijk yj t−k +
n∑
h=1
h6=i

γih yh t + ei t, (10)

2This is shown in a previous working paper version of this manuscript.
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where ei t is an error term. It is straightforward to see that (see Lemma 1) the βijk and γih

coefficients can be expressed as a function of the αijk, ρ
ih and cii parameters. In particular,

(10) can be re-written as

yi t =

p∑
k=1

n∑
j=1

αijk − n∑
l=1
l 6=i

ρil
√
cll
cii
αljk


︸ ︷︷ ︸

βijk

yj t−k +
n∑
h=1
h6=i

ρih
√
chh
cii︸ ︷︷ ︸

γih

yh t + ui t. (11)

Notice that the lemma shows that the errors ei t and ui t are the same. We denote by θ the

vector of parameters of interest (α′,ρ′)′ of dimension m = n2p + n(n − 1)/2. The regres-

sion representation in (11) suggests to associate the following quadratic loss function to the

problem of determining θ, conditional on c,

`(θ; yt, c) =
n∑
i=1

yi t − p∑
k=1

n∑
j=1

αijk − n∑
l=1
l 6=i

ρil
√
cll
cii
αljk

 yj t−k −
n∑
h=1
h6=i

ρih
√
chh
cii
yh t


2

. (12)

If a sample of T observations of the yt process is available for t = 1, . . . , T then we propose

to estimate the model parameters using a lasso–type estimator

θ̂T = arg min
θ∈Rm

 1

T

T∑
t=1

`(θ; yt, ĉT ) + λGT

p∑
k=1

n∑
i,j=1

|αijk|
|α̃T ijk|

+ λCT

n∑
l,h=1
l>h

|ρlh|
|ρ̃ lhT |

 , (13)

where λGT > 0 and λCT > 0 are the lasso tuning parameters and α̃T , ρ̃T and ĉT are pre–

estimators of the α, ρ, and c coefficients, respectively. Due to the presence of autocorrelation

in and across the components of yt the regressors in (11) are likely to be dependent, therefore

we adopt here an adaptive lasso penalty as originally proposed by Zou (2006) and then

studied by Kock (2012, 2016) for dependent data. If the sample size is sufficiently large, a

natural pre–estimator of α is the least squares estimator of the var autoregressive matrices

while the pre–estimator of ρ is the partial correlation estimator obtained from the sample
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covariance of the var residuals. Otherwise, if the sample size is not sufficiently large a

pre–estimator of α could be obtained by estimating the autoregressive matrices via ridge

regression while the pre–estimator of ρ could be obtained from a shrinkage estimator of the

residual covariance (Ledoit and Wolf, 2004). Last, a possible choice for the pre–estimator of

c is the reciprocal of the variance of each series (Peng et al., 2009).

2.3 The nets algorithm

In this section we introduce the nets algorithm to solve the optimization problem of equation

(13). Notice that the loss function in (12) is not the standard quadratic loss function of a

linear regression model and the standard lasso algorithms cannot be applied. However, it

is still possible to design a coordinate descent algorithm that can be used to minimize the

objective function of (13). The procedure we propose is a generalization of the space algo-

rithm proposed by Peng et al. (2009) for the estimation of partial correlation networks, and

its a variation of the shooting algorithm of Fu (1998) typically used for lasso optimization.

Additional notation is required to describe the algorithm. We begin by introducing the

matrix representation of the model of equation (11) obtained by stacking the time series in the

panel. Let Y denote a nT × 1 vector defined as (y1 1, ..., y1T , ..., yi 1, ..., yi T , ..., yn 1, ..., ynT )′;

let XG = (xG 111, ...,xGijk, ...,xGnnp) be a nT × n2p matrix with (i, j, k)-th column defined

as

xGijk = ( 0, ..., 0, yj−k, ..., yj t−k, ..., yj T−k︸ ︷︷ ︸
i–th block

, 0, ..., 0)′,

and let XC = (xC 21,xC 31,xC 32, ...,xC ij, ...,xC n(n−1)) be a nT × n(n− 1)/2 matrix with

(i, j)–th column defined as

xC ij =

(
0, ..., 0,

√
cjj
cii

(yj 1, ..., yj t, ..., yj T )︸ ︷︷ ︸
i–th block

0, ..., 0,

√
cii
cjj

(yi 1, ..., yi t, ..., yi T )︸ ︷︷ ︸
j–th block

0, ..., 0

)′
.
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Then, it is straightforward to check that model (11) can be represented as

Y = XG β(α,ρ) + XC ρ+ U ,

where U is a nT×1 vector of residuals and β(·, ·) denotes the function which maps the α and

ρ parameter vectors onto the β parameter vector whose components are given in (10). Notice

that the parameter β and the matrix XC depend implicitly on the parameter c and that in

the estimation we set this to the pre-estimator ĉT . The dependence on c is suppressed in the

notation for simplicity. In what follows it is convenient to introduce shorthand notation for

the stacked vectors. Let v be a nT × 1 stacked vector, then we use v[it] to refer to the t-th

element of the i-th block of v.

The nets algorithm is an iterative coordinate descent procedure for the minimization of

the objective function of (13). Each iteration s of the algorithm updates one component

of the parameter vector θ = (α′,ρ′)′. The α and ρ parameter estimates at iteration s are

denoted as α̂(s) and ρ̂(s) respectively. We define the residual estimate at iteration s as

Û
(s)

= Y −XG β(α̂(s), ρ̂(s))−XC ρ̂
(s) .

The algorithm iterates until convergence, which is checked at the end of each full cycle of

updates of θ. To describe the algorithm, it is useful to use two auxiliary nT×1 stacked vectors

ẍ and ÿ. The ẍ vector denotes the regressors corresponding to the current coefficient being

updated, while the ÿ vector is the partial residual of the model with respect to all parameter

besides the coefficient being currently updated (either αijk or ρij). The αijk coefficient is

updated as

α̂
(s)
ijk = sign (ÿ′ẍ)

(∣∣∣∣ ÿ′ẍẍ′ẍ
∣∣∣∣− λGT

α̃ijk

1

ẍ′ẍ

)
+

,
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where ẍ and ÿ are defined as

ẍ[lt] =


yl t−k, if l = i

−ρ̂il (s−1)
√

c̃ll
c̃ii
yj t−k otherwise

ÿ[lt] = U (s−1)
[lt] + α̂

(s−1)
ijk ẍ[lt],

for each l = 1, ..., n and t = 1, ..., T . The ρij coefficient is updated as

ρ̂ij (s) = sign (ÿ′ẍ)

(∣∣∣∣ ÿ′ẍẍ′ẍ
∣∣∣∣− λCT

ρ̃ij
1

ẍ′ẍ

)
+

,

where ẍ and ÿ are defined as

ẍ[lt] =

√
c̃hh
c̃ll

(
yh t −

n∑
j=1

p∑
k=1

α
(s−1)
hjk yj t−k

)
ÿ[lt] = U (s−1)

[lt] + ρ̂ij (s−1)ẍ[lt],

for (l, h) equal (i, j) or (j, i) and t = 1, ..., T , and otherwise ÿ[lt] and ẍ[lt] are set to zero.

It is important to stress that the parameter vector θ contains n2p+ n(n−1)
2

elements, whose

optimization would require large amounts of memory to be stored when the panel is large.

On the other hand, the coordinate wise minimization algorithm is appealing in this context

in that it has mild storage requirements and can be applied in large dimensional applications.

As far as the estimation of c is concerned, we follow the two–step iterative procedure

proposed in Peng et al. (2009): (i) Given an estimate of c, we estimate the θ parameter

using nets. (ii) Given an estimate c and an estimate of θ we update the estimate of c.

Notice, that cii is the reciprical of the residual variance of equation (11). These two steps are

then iterated until convergence, which typically kicks in within very few iterations.

A number of hacks have been developed in the literature to optimize the estimation of

lasso models when the number of parameters is large. We point out here that the active

shooting approach proposed in Peng et al. (2009) is particularly useful. Active shooting
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consists of carrying out the coordinate descent steps for the current non–zero parameters

until convergence (the active set) and then for the zero parameters. When the lasso solution

is sparse, active shooting can lead to substantial advantages in terms of execution time.

3 Theory

In this section we show, under appropriate conditions, the estimation and selection consis-

tency of the estimator defined in the previous section. We denote by θ0 = (α′0,ρ
′
0)′ and c0

the true value of the parameters θ = (α′,ρ′)′ and c. The proofs of the propositions of this

section are provided in the Appendix.

The detailed assumptions are given in the Appendix and here we only review the main

features of the model. First, we assume yt to be generated by a stable var as in (1).

Moreover, we require bounds on the higher order moments of yt, such that suitable Bernstein-

type exponential inequalities for dependent processes apply (see e.g. Bosq, 1996; Doukhan

and Neumann, 2007). Second, we assume positive definiteness of the spectral density matrix

of yt and of the precision matrix, C0, of the var innovations εt. This guarantees that the

population Granger and contemporaneous network are both well defined. Given the loss

function, `(θ; yt, c) defined in (12), the unconstrained problem has a solution in population,

i.e. the parameter vector θ0 is identified.

Proposition 1. Under Assumption 1, the true value of the parameters is such that θ0 =

arg minθ E[`(θ; yt, c0)].

The estimator defined in (13) can be equivalently formulated as

θ̂T = arg min
θ∈Rm

LT (θ, ĉT ), (14)

where

LT (θ, ĉT ) =

[
1

T

T∑
t=1

`(θ; yt, ĉT ) + λT

m∑
i=1

wi|θi|

]
, (15)
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where λT is the lasso tuning parameter and wi are the adaptive lasso weights. The

specification of the weight is wi = C•/|θ̃T i| where θ̃T i denotes the pre–estimator of the θi

coefficient and C• denotes a known positive constant that is equal to Cα for the α coefficients

and Cρ for the ρ coefficients. Put differently, in the theoretical analysis of the estimator we

assume that the λGT = λT Cα and λCT = λT Cρ. Thus, λT controls the overall degree of

shrinkage of the parameters of the model.

In what follows we denote the sets of non–zero parameters as AG = {(i, j, k) : α0 ijk 6= 0},

AC = {(i, j) : ρij0 6= 0} and A = AG ∪AC . The number of non–zero parameters in the model

is qT = |A|. The set of zero parameters is then Ac. Let also {sT} be a positive sequence of

real numbers such that for any i ∈ A we have |θ0 i| ≥ sT .

The solution of (14) when restricted to the set of parameters θ such that θAc = 0

is denoted as θ̂AT . This is the estimator of the non–zero parameters obtained when we

assume to know those that are zero. To obtain consistency we follow the same strategy as in

Meinshausen and Bühlmann (2006), Peng et al. (2009), and Fan and Peng (2004). First, we

prove consistency in the restricted problem.

Proposition 2. (estimation consistency). Suppose that, as T →∞, qT = o
(√

T
log T

)
,

λT
√

T
log T
→ ∞, and

√
qTλT = o(1). Then, under Assumptions 1 and 2, for any η > 0, θ̂AT

exists with probability at least 1−O(T−η), and there exists a constant κR > 0 such that

Pr
(∥∥θ̂AT A − θ0A

∥∥ ≤ κR
√
qTλT

)
≥ 1−O(T−η).

Moreover, if the signal sequence sT is such that, sT√
qTλT

→∞, then Pr
(
sign(θ̂AT i) = sign(θ0 i)

)
≥

1−O(T−η), for any i ∈ A.

Second, we show that the restricted estimator is also a solution of the unrestricted prob-

lem, i.e. when we do not know the zero coefficients (see Lemma 8 in the Appendix). Then, in

the next Proposition, we prove consistency of edge selection and of the unrestricted estimator.
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Proposition 3. (selection consistency and oracle property). Suppose that the

same conditions of Proposition 2 hold and that, as T → ∞, n = O(T ζ) for some ζ > 0

and
√
qT

√
log T
T

= o (λT ). Then, under Assumptions 1 and 2, for any η > 0, θ̂T exists with

probability at least 1−O(T−η). Moreover,

(a) Pr
(
θ̂T i = 0

)
≥ 1−O(T−η), for any i ∈ Ac;

(b) there exists a constant κU > 0 such that

Pr
(∥∥θ̂T − θ0

∥∥ ≤ κU
√
qTλT

)
≥ 1−O(T−η),

and Pr
(
sign(θ̂T i) = sign(θ0 i)

)
≥ 1−O(T−η), for any i ∈ A.

Since θ̂T = (α̂′T , ρ̂
′
T )′, as an immediate consequence of Proposition 3 we have consistency

of all the estimated parameters of the model and we have selection consistency for the non–

zero edges of the Granger and contemporaneous networks.

Corollary 1. Define as α̂T ijk the generic entry of α̂T and as ρ̂ ijT the generic entry of ρ̂T ,

and define the estimated edges’ sets of the Granger and contemporaneous networks as

ÊGT = {(i, j) ∈ V × V : α̂T ijk 6= 0, for at least one k ∈ {1, ..., p}} ,

ÊC T =
{

(i, j) ∈ V × V : ρ̂ ijT 6= 0
}
.

Then, under the same Assumptions of Proposition 3, for T sufficiently large and any η > 0,

we have Pr(ÊGT = EG) ≥ 1−O(T−η), and Pr(ÊC T = EC) ≥ 1−O(T−η).

Given the asymptotic conditions on the number of non–zero coefficients, qT , the “worst

case” scenario is when it is almost in the order of
√

T
log T

. In that case λT needs to be nearly

in the order of T−1/4. On the other hand, for the “best case” scenario, that is when qT = O(1)

(for example, when the dimension n is fixed), then the order of λT can be nearly as small as

T−1/2 (within a factor of log T ). Consequently, the L2-norm distance of the estimator from

the true parameter is in the order of
√

log T
T

, with probability at least 1−O(T−η).
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4 Simulation Study

In this section we analyse the properties of our estimator using simulated data. The exercise

consists of simulating a large sparse var process and then using the nets algorithm to

estimate it.

FIGURE 1 ABOUT HERE

We simulate a 100 dimensional sparse var(1). Notice that the total number of parameters

in this system is 15050. The sparse autoregressive matrix A1 and concentration matrix C

are obtained from an Erdös–Renyi random graph model. The Erdös–Renyi random graph is

a graph defined over a fixed set of vertices and a random set of edges, where the existence

of an edge between vertices i and j is determined by a Bernoulli trial with probability p,

independent of all other edges. The A1 matrix is constructed on the basis of a directed

Erdös–Renyi model G1

[A1]ij =


0.275 if (i, j) ∈ E1

0 otherwise

,

where E1 is the set of (directed) edges of G1. The concentration matrix C is constructed on

the basis of a undirected Erdös–Renyi model G2

[C]ij =



− 1√
didj

i 6= j and (i, j) ∈ E2

1.5 i = j

0 otherwise

,

where E2 is the set of (undirected) edges of G2 and di denotes the degree of vertex i in this

graph. Note that the simulation is designed in a way such that the sparsity structure of the

Granger and contemporaneous networks of the var coincide with the one of the two random

graphs G1 and G2. Also, the specification guarantees that the var is stable and that the

concentration matrix is positive definite. The edge probability p is set so that the expected
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number of links in each of the two networks is equal to the number of series, n, in the panel.

We report in Figure 1 the plot of the Granger and contemporaneous networks associated with

a randomly chosen realization of the model. Notice that despite the networks being sparse (in

the sense that the expected number of links is O(n)), they are almost fully interconnected. We

simulate samples of different sizes from the sparse var(1) we just described (T =250, 500, 750

and 1000) and then use the nets algorithm to estimate the model. For simplicity, the tuning

parameters λGT and λCT are set equal to a common shrinkage tuning parameter λT . Our lasso

estimator requires pre–estimators of the α and ρ parameters to construct the lasso penalty

weights. The pre–estimator of α is the least squares estimator of the var(1) autoregressive

matrix, while the pre–estimator of ρ is the partial correlation estimator obtained from the

sample covariance of the var(1) residuals. Last, we initialize c using the reciprocal of the

sample variances of each series. The model is then estimated over a range of values of the

common shrinkage tuning parameter λT .

FIGURE 2 AND TABLE 1 ABOUT HERE

The simulation is replicated 1000 times and the quality of the nets estimator is measured

on the basis of the MSE and the ROC curve, which is the plot of the false discovery rate

(FDR) of the estimator versus the true positive rate (TPR). We report in the left panel of

Figure 2 the MSE of the nets estimator as a function of the tuning parameter λT for the

sample size T equal to 500, 750 and 1000.3 The picture displays the typical profile of shrinkage

type estimators, that is the MSE is a convex function of the tuning parameter, and as the

sample size increases the MSE of the estimator decreases. The right panel of Figure 2 reports

the ROC curve associated with the nets estimator for the sample size T equal to 250, 500,

750 and 1000. Recall that the FDR is defined as the ratio of incorrectly detected non–zero

parameters over the total number of zero parameters, while TPR is defined as the ratio of

correctly detected non–zero parameters over the total number of non–zero parameters. Note

that the penalization coefficient determines the FDR and TFR properties of the estimator:

3We omit from the picture for T = 250 because of scaling issues.
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when λT is small (large), the proportion of type 1 errors is high (low) while the proportion

of type 2 errors is low (high). The curves show that as the sample size T increases the

performance of the nets estimator, as measured by the area underneath the ROC curve,

increases steadily. In Table 1 we report detailed results on the MSE and TPR of the nets

estimator when the FDR is controlled at 1%, 5% and 10%. For comparison purposes, the

table also reports the MSE of the pre–estimator. The MSE of the nets estimator decreases

steadily as the sample size get larger. When the sample size is 250 the efficiency gains with

respect to the pre–estimator are substantial. As the sample size increases the pre–estimator

becomes progressively more efficient relative to the lasso estimator, however the efficiency

gain of nets are still large. As far as the TPR is concerned, the table shows that when the

TPR is controlled at 1%, 5% and 10% levels, the procedure has a fair amount of power even

when the sample size T is 250, and that as the sample size increases power raises steadily.

In particular, the power is roughly around 80% when the sample size is 750 and the FDR is

controlled at the 1% level. Overall, the simulation results convey that the nets algorithm

performs satisfactorily, and that the gains with respect to the traditional estimator can be

large for sparse var systems.

5 Empirical Application

We use the methodology introduced in this work to study interconnectedness in a panel

of volatility measures. The application is close in spirit to, among others, the research of

Diebold and Yılmaz (2009, 2014, 2015) and Engle et al. (2012).

5.1 Data

TABLE 2 ABOUT HERE

We consider a panel of ninety U.S. bluechips across different industry sectors. The list

of company names and industry groups is in Table 2. Our sample spans January 2nd 2004
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to December 31st 2015, which corresponds to 3021 trading days. During this sample period

most of the stocks in the list have been part of the S&P 100 index. Following Diebold and

Yılmaz (2015) we measure volatility using the high–low range (Parkinson, 1980)

σ̃2
i t = 0.361

(
phighi t − plowi t

)
,

where phighi t and plowi t denote respectively the max and the min log price of stock i on day t.4

We focus on analyzing volatility interconnectedness conditional on a market wide and

sector specific volatility factors. There is a large literature documenting evidence of a factor

structure in volatility (see, inter alia, Barigozzi, Brownlees, Gallo, and Veredas, 2014; Luciani

and Veredas, 2015; Ghysels, 2014; Barigozzi and Hallin, 2015). As previously pointed out, it

is straightforward to check that when common factors are present the dependence structure

of the data is not sparse. To this extent, we study the interconnectedness of the residuals of

the regression

log σ̃2
i t = β0 + β1 log σ̃2

mt + β2 log σ̃2
s t + zi t, (16)

where σ̃2
mt and σ̃2

s t denote respectively a market wide and a sector specific volatility factors.

The market and sectoral volatilities are measured using the high–low range estimator applied

to the S&P 500 index and the SPDR sectoral indices of S&P 500.5 The residuals are obtained

after estimating the model by least squares. In what follows we refer to the volatility residual

panel as the volatility panel for short.

TABLE 3 AND FIGURE 3 ABOUT HERE

4Several advanced estimators of volatility based on high frequency data have been proposed over the last
years (Andersen, Bollerslev, Diebold, and Labys, 2003; Barndorff-Nielsen, Hansen, Lunde, and Shephard,
2008; Aı̈t-Sahalia, Mykland, and Zhang, 2005). However, despite its simplicity a number of contributions
have pointed out that the high–low range estimator performs satisfactorily relative to more sophisticated
alternatives (Alizadeh, Brandt, and Diebold, 2002; Brownlees and Gallo, 2010).

5The SPDR sectoral indices of the S&P 500 we use are Consumer Discretionary (XLY), Consumer Staples
(XLP), Energy (XLE), Financials (XLF), Health Care (XLV), Industrials (XLI), Materials (XLB), Technology
(XLK) and Utilities (XLU).
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Table 3 reports summary statistics on the variance, kurtosis, autocorrelation, average

cross correlation and average cross autocorrelation of order one for the volatility residuals.

Moreover, in Figure 3 we show the heatmaps of the sample autocorrelation matrix of order

one and the sample correlation matrix. We note that after netting out the factors, the

volatility residuals still exhibit autocorrelation. It is important to emphasize that while

the raw volatility measure exhibit long range dependence, the volatility residuals exhibit a

considerably weaker autocorrelation structure. Inspection of the average correlations and

the heatmaps shows that contemporaneous and lagged cross correlation is still present in the

volatility residuals. Interestingly, tickers in the same industry still exhibit a moderate degree

of correlation even after conditioning on the sectoral factors.

5.2 In–Sample Estimation Results

We analyse the panel of volatility measures using the nets algorithm over the entire sample.

The order of the var model p is set to one. The pre–estimator of the α parameters is the

least squares estimator of the var(1) autoregressive matrix, while the pre–estimator of the

ρ parameters is the partial correlation estimator obtained from the sample covariance of the

var(1) residuals. Last, we initialize c using the reciprocal of the sample variances of each

series. The penalties λGT and λCT are determined by a cross–validation procedure. We split the

entire sample in an estimation and a validation samples. The estimation sample corresponds

to the first 75% of the entire sample and the validation sample to the last 25%. For given

values of the tuning parameters, we first estimate the model in the estimation sample and

then compute the residual sum of squares (RSS) in the validation sample. We perform these

steps over a grid of λGT and λCT values and then choose the optimal tuning parameters as the

ones that minimize the validation RSS. We then estimate the model over the entire sample

using the optimal value of the tuning parameters.

TABLE 4 AND FIGURE 4 ABOUT HERE
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We report the estimated Granger and contemporaneous networks in Figure 4. In the

Granger network plot the diameter of each vertex is proportional to the out–degree (the

number of non–zero spillovers effects toward others) while in the contemporaneous network

the diameter is proportional to the degree. In both plots we use the vertex color to de-

note the different industry groups. We exclude from the graphs the vertices that do not

have any connections, which is one ticker in the Granger network and seven tickers in the

contemporaneous network.

Table 4 reports the number of linkages of the Granger and contemporaneous networks

of the entire panel and individual sectors. The estimated Granger volatility network has

a total of 251 edges (approximately 3% of the total edges), while the contemporaneous

volatility network contains 294 edges (approximately 7% of the total edges). The estimated

networks share some common features. For instance, the number of industry linkages of the

two networks are highly correlated and the financial sector is in particular the sector that

accounts for most linkages.

We compute an in–sample R2 type goodness–of–fit criteria for each series in the panel to

summarise the amount of variability explained by the sparse var, which is defined as the

proportion of variance explained by the regression equation (11). Table 4 reports the average

of the R2 index over the entire panel as well as the individual sectors. The index has a strong

positive correlation with the number of linkages in each sector and is on average around 22%.

For comparison purposes, Table 4 also reports in–sample factor and sectoral R2. The factor

R2 is defined as the R2 obtained by regressing the volatility measure on the market factor and

the sector R2 is defined as the R2 obtained by regressing the volatility measure on the market

wide and sector factor minus the factor R2. The market and sector factors account for most

of the variability in the series, which is roughly 56%. A back of the envelop computation

shows that the networks explains around an additional 11% of the overall variability, which

roughly matches the amount of variability explained by sectoral factors.

TABLE 5 AND FIGURE 5 ABOUT HERE
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In order to get better insights on the industry linkages in Table 5 we report the total

number of links between industry groups. It is interesting to note that after conditioning

on the sectoral factors there are still a moderate number of interconnections between firms

within the same industry. The table also shows that firms in the financial sector in particular

have a high degree of interconnectedness across industries. In Figure 5 we report the degree

distribution of the estimated networks and the distribution of the non–zero α and ρ coeffi-

cients. As far as the degree distribution is concerned, the number of connections has a high

degree of heterogeneity in the cross section. In particular, in the contemporaneous network

the most interconnected tickers account for a large number of connections relative to the

total. The histogram of the non–zero coefficients shows that the majority of the coefficients

are positive and that positive coefficients are on average larger than the negative ones.

TABLE 6 ABOUT HERE

Last, we rank the firms in the panel on the basis of their influence in the Granger and

contemporaneous networks. We measure the influence of series j in the Granger and con-

temporaneous networks using, respectively, the indices
∑N

i 6=j |α̂ij1| and
∑N

i 6=j |ρ̂ij|. We report

the top ten most influential tickers of the Granger and contemporaneous networks according

to this criteria in Table 6. The table shows clearly that large financials firms are highly

influential. In particular, the results shows that the financial firms that have been heavily

involved in the great financial crisis like Bank of America (BAC), AIG and Citigroup (C) are

the stocks associated with the largest spillover effects in the Granger network.

Overall, the in–sample estimation results show that, after conditioning on market wide

and sectoral factors, the sparse var captures an important proportion of overall variability,

and that the financial industry in particular has the highest degree of interconnectedness.

5.3 Out–of–Sample Forecasting

We carry out a forecasting exercise to evaluate the out–of–sample performance of the method-

ology. The exercise is designed as follows. We split the sample in an in–sample period
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spanning January 2nd 2004 to December 31st 2013 and an out–of–sample period spanning

January 2nd 2014 to December 31st 2015. We first estimate the sparse var in–sample us-

ing the same steps outlined in the previous section and we then evaluate the model in the

out–of–sample period.

TABLE 7 ABOUT HERE

The prediction evaluation is divided into two parts. The first part focuses on the evalu-

ation of the nets estimator of the autoregressive component by predicting one–step–ahead

volatility residuals. The benchmark forecast for this exercise is the constant zero forecast.

Notice that the constant zero forecast represents the optimal forecast in case the dependence

in the panel is fully captured by the factor part of model (16) without exploiting the infor-

mation in the residuals. The competing forecasts are the ones obtained from a var model

estimated via nets, univariate AR(1) models estimated by least squares, and a var model

estimated by ridge regression (with tuning parameter chosen by Generalized Cross Valida-

tion). Note that the volatility residuals are obtained from the estimation results of model

(16) estimated over the entire sample.

We report the forecasting results in the top panel of Table 7. The first row of the table

reports the MSE of the benchmark while the remaining rows report the out–of–sample R2

of the competitors. The out–of–sample R2 index is defined as one minus the ratio of the

MSE of the competing models over the MSE of the benchmark. The performance indices

are averaged over the entire panel and the industry sectors. The results show that the var

forecasts obtained by the nets estimator systematically improve forecasting ability over the

benchmark by roughly 8% on average and it is the best performing forecast method overall.

The second part focuses on the evaluation of the nets estimator of the contemporane-

ous component by predicting the contemporaneous volatility residuals conditional on the

estimated autoregressive component. We construct the series of var residuals ε̂i t of the

autoregressive component estimated by nets, and the focus is on predicting each residuals
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series conditional on the remaining ones on the basis of the regression

ε̂i t =
n∑
h=1
h6=i

γij ε̂h t + ui t, i = 1, . . . , n.

The benchmark forecast for this exercise is again the constant zero forecast, which is the

optimal forecast in case the residuals do not have any cross–correlation. The competing fore-

casts are ones the ones obtained from the contemporaneous component of the var estimated

by nets, the ones obtained from a linear regression estimated by least squares and a linear

regression estimated by ridge regression (with tuning parameter chosen by Generalized Cross

Validation). The linear regression and the ridge regression are estimated in the in–sample

period using the in–sample one–step ahead forecast errors.

We report the forecasting results in the bottom panel of Table 7. The first row of the

table reports the average MSE of the benchmark model while the remaining rows report the

out–of–sample R2 of the competitors. Results show that the nets forecasts systematically

improve out–of–sample predictive ability across sectors and on average improve forecasting

over the benchmark by 13%.

6 Conclusions

In this work we introduce network techniques for the analysis of lagre panels of time series. We

model a panel as a var where the autoregressive matrices and the inverse covariance matrix

of the system innovations are assumed to be sparse. The system has a natural network

representation in terms of a directed graph representing predictive Granger relations and

an undirected graph representing contemporaneous partial correlations. A lasso estimation

algorithm called nets is introduced to estimate simultaneously the autoregressive matrices

and the inverse covariance matrix of the model. The large sample properties of the estimator

are established in a high–dimensional setting. The methodology is used to analyse a panel
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of volatility measures of US bluechips between January 2004 and December 2015 conditional

on market wide and sector specific volatility factors. The analysis shows that the series

exhibit a hight degree of interconnectedness and that financial firms have the highest degree

of interdependence. A forecasting exercise shows that the methodology introduced in this

work allows to improve forecasting over a number of benchmarks.
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Table 1: Simulation study

FDR=1% FDR=5% FDR=10% MSE
T TPR MSE TPR MSE TPR MSE pre–estimator

250 0.49 0.32 0.55 0.31 0.60 0.34 5.33
500 0.75 0.10 0.84 0.17 0.88 0.25 1.45
750 0.79 0.06 0.89 0.11 0.92 0.15 0.81
1000 0.82 0.05 0.93 0.09 0.96 0.15 0.55

The table reports the results of the simulation exercise for different values of the sample size T . The table reports the True

Positive Rate (TPR) and the MSE of the nets estimator when the False Discovery Rate (FDR) is controlled at the 1%, 5% and

10% levels. The last column of the table shows the MSE of the pre–estimator.
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Table 2: U.S. Bluechips

Ticker Company Name Sector Ticker Company Name Sector

AMZN Amazon.com Cons. Disc. ABT Abbott Laboratories Health Care
CMCSA Comcast Cons. Disc. AMGN Amgen Health Care
DIS Walt Disney Cons. Disc. BAX Baxter International Health Care
F Ford Motor Cons. Disc. BMY Bristol-Myers Squibb Health Care
FOXA Twenty-First Century Fox Cons. Disc. GILD Gilead Sciences Health Care
HD Home Depot Cons. Disc. JNJ Johnson & Johnson Health Care
LOW Lowes Cons. Disc. LLY Lilly (Eli) & Co. Health Care
MCD McDonalds Cons. Disc. MDT Medtronic Health Care
NKE NIKE Cons. Disc. MRK Merck & Co. Health Care
SBUX Starbucks Cons. Disc. PFE Pfizer Health Care
TGT Target Cons. Disc. UNH United Health Health Care
TWX Time Warner Cons. Disc. BA Boeing Company Industrials
CL Colgate-Palmolive Cons. Stap. CAT Caterpillar Industrials
COST Costco Cons. Stap. EMR Emerson Electric Industrials
CVS CVS Caremark Cons. Stap. FDX FedEx Industrials
KO The Coca Cola Company Cons. Stap. GD General Dynamics Industrials
MDLZ Mondelez International Cons. Stap. GE General Electric Industrials
MO Altria Cons. Stap. HON Honeywell Intl Industrials
PEP PepsiCo Cons. Stap. LMT Lockheed Martin Industrials
PG Procter & Gamble Cons. Stap. MMM 3M Company Industrials
WMT Wal-Mart Stores Cons. Stap. NSC Norfolk Southern Industrials
APA Apache Energy RTN Raytheon Industrials
APC Anadarko Petroleum Energy UNP Union Pacific Industrials
COP ConocoPhillips Energy UPS United Parcel Service Industrials
CVX Chevron Energy UTX United Technologies Industrials
DVN Devon Energy Energy AAPL Apple Technology
HAL Halliburton Energy ACN Accenture plc Technology
NOV National Oilwell Varco Energy CSCO Cisco Systems Technology
OXY Occidental Petroleum Energy EBAY eBay Technology
SLB Schlumberger Ltd. Energy EMC EMC Technology
XOM Exxon Mobil Energy HPQ Hewlett-Packard Technology
AIG AIG Financials IBM IBM Technology
ALL Allstate Financials INTC Intel Technology
AXP American Express Co Financials MSFT Microsoft Technology
BAC Bank of America Financials ORCL Oracle Technology
BK Bank of New York Financials QCOM QUALCOMM Technology
C Citigroup Financials TXN Texas Instruments Technology
COF Capital One Financial Financials T AT&T Technology
GS Goldman Sachs Financials VZ Verizon Technology
JPM JPMorgan Chase Financials DD Du Pont Materials
MET MetLife Financials DOW Dow Chemical Materials
MS Morgan Stanley Financials FCX Freeport-McMoran Materials
SPG Simon Property Financials MON Monsanto Materials
USB U.S. Bancorp Financials AEP American Electric Power Utilities
WFC Wells Fargo Financials EXC Exelon Utilities

The table reports the list of tickers, company names and industry sectors.
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Table 3: Descriptive Stats

Disc Stap Energy Fin Heal Ind Tech Mat Util All

variance 0.064 0.049 0.042 0.064 0.059 0.050 0.059 0.064 0.041 0.056
kurtosis 4.401 5.434 4.981 4.929 4.993 4.676 4.467 4.413 5.740 4.807
ρ1 0.260 0.231 0.206 0.309 0.254 0.222 0.257 0.320 0.193 0.253
ρ5 0.170 0.137 0.144 0.241 0.156 0.133 0.163 0.237 0.120 0.168
ρ22 0.142 0.104 0.123 0.183 0.118 0.109 0.120 0.202 0.075 0.132
ρ0,others 0.091 0.089 0.063 0.077 0.087 0.098 0.080 0.073 0.069 0.083
ρ1,others 0.045 0.048 0.024 0.028 0.046 0.045 0.042 0.034 0.034 0.039

The table reports average descriptive statistics over the industry sectors and the entire panel. The set of descriptive statistics

considered contains the sample variance, kurtosis, autocorrelation of order 1, 5 and 22, the average contemporaneous correlation

with all other tickers, and the average order 1 autocorrelation with all other tickers.

Table 4: Network Estimation Summary

Disc Stap Ener Fin Heal Ind Tech Mat Util All

Granger Links 47 15 19 41 34 39 35 16 5 251
Contemporaneous Links 33 20 29 71 30 46 51 11 3 294
nets R2

is 22.5 18.6 18.9 32.2 18.9 24.4 20.0 19.5 11.0 22.3
factor R2

is 45.3 37.2 42.7 56.6 33.6 51.3 39.1 45.9 36.8 44.4
sector R2

is 7.3 9.6 25.3 16.1 9.0 5.8 8.4 10.6 25.8 11.6

The table reports summary estimation results over the industry sectors and the entire panel. The first row of the table

reports the outer degree of the Granger network, the second row reports the degree of the contemporaneous network, the third

row reports the (in–sample) average R2
is of the nets regression. For comparison, the table reports in the fourth and fifth rows

the average (in–sample) factor R2
is and (in–sample) sector R2

is, respectively.
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Table 5: Sectoral Linkages

Granger Component
Disc Stap Ener Fin Heal Ind Tech Mat Util

Disc 33.7 22.5 6.5 15.0 14.3 16.9 13.3 10.0 22.2
Stap 4.8 22.5 2.2 5.3 6.3 7.2 1.3 10.0 0.0
Ener 8.4 7.5 28.3 7.1 4.8 7.2 4.0 3.3 0.0
Fin 15.7 10.0 15.2 33.6 14.3 15.7 14.7 20.0 0.0
Heal 10.8 7.5 10.9 9.7 31.7 6.0 20.0 6.7 11.1
Ind 6.0 12.5 10.9 10.6 7.9 27.7 9.3 10.0 33.3
Tech 12.0 12.5 15.2 10.6 14.3 15.7 30.7 16.7 11.1
Mat 8.4 5.0 6.5 8.0 3.2 2.4 5.3 23.3 0.0
Util 0.0 0.0 4.3 0.0 3.2 1.2 1.3 0.0 22.2

Contemporaneous Component
Disc Stap Ener Fin Heal Ind Tech Mat Util

Disc 5.8 18.2 14.5 13.9 13.5 18.8 14.7 14.9 10.3
Stap 13.0 6.1 8.5 6.7 13.5 9.2 11.3 10.3 13.8
Ener 8.2 6.8 8.5 13.0 5.7 4.4 8.0 10.3 6.9
Fin 15.0 10.1 24.8 6.3 15.1 18.8 18.5 16.1 13.8
Heal 12.6 17.6 9.4 13.0 5.7 14.8 16.8 11.5 17.2
Ind 20.8 14.2 8.5 19.3 17.7 6.1 18.9 17.2 13.8
Tech 16.9 18.2 16.2 19.7 20.8 19.7 5.9 12.6 10.3
Mat 6.3 6.1 7.7 6.3 5.2 6.6 4.6 4.6 6.9
Util 1.4 2.7 1.7 1.8 2.6 1.7 1.3 2.3 6.9

The table reports the fraction of Granger and contemporaneous linkages between the industrial sectors. The (i, j) entry of

the Granger linkages table is defined as the total number of linkages for sector j to sector i standardized by the total number of

linkages from sector j. The (i, j) entry of the contemporaneous linkages table is defined as the total number of linkages between

sector i and j standardized by the total number of linkages of sector j.

Table 6: Rankings

Granger Contemporaneous
Rank Company Sector Company Sector

1 BAC Financials UNP Industrials
2 AIG Financials T Technology
3 C Financials USB Financials
4 ALL Financials GE Industrials
5 MCD Discretionary TGT Discretionary
6 HPQ Technology WFC Financials
7 DOW Material MS Financials
8 SPG Financials NSC Industrials
9 GE Industrials F Discretionary
10 CVS Staples NOV Energy

The table reports the top ten of the most interconnected series in the Granger and contemporaneous networks.

34



Table 7: Forecasting

Granger Component
Disc Stap Energy Fin Heal Ind Tech Mat Util All

benchmark MSE 5.67 3.96 4.52 3.90 5.15 4.32 5.86 8.16 3.14 4.91
nets R2

oos 10.21 6.25 5.30 5.86 6.98 5.46 9.49 17.90 0.50 8.08
AR(1) R2

oos 5.65 3.58 5.04 1.65 2.95 4.07 6.30 15.14 -3.49 5.06
ridge R2

oos 5.47 1.79 2.74 -8.46 1.09 3.39 4.89 12.84 -8.20 2.57
Contemporaneous Component

Disc Stap Energy Fin Heal Ind Tech Mat Util All

benchmark MSE 5.12 3.74 4.30 3.66 4.82 4.11 5.35 6.78 3.11 4.54
nets R2

oos 15.76 12.56 12.98 17.21 6.28 19.08 14.03 3.00 -1.17 13.20
reg R2

oos 12.89 9.12 9.02 15.23 2.97 17.44 10.98 -1.94 -6.44 10.19
ridge R2

oos 12.97 9.20 9.05 15.32 3.06 17.50 11.04 -1.87 -6.37 10.26

The table reports summary forecasting results over the industry sectors and the entire panel. The first panel reports

forecasting exercise for the Granger component. The first row reports the MSE (times 100) of the benchmark. The second, third

and fourth rows report the out–of–sample R2 of, respectively, nets, an AR(1) estimated by least squares and a VAR estimated

using ridge regression. The second panel reports the forecasting exercise of the contemporaneous component. The first row

reports the MSE (times 100) of the benchmark. The second, third and fourth row report the out–of–sample R2 of, respectively,

nets, the linear regression estimator and the ridge estimator.
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Figure 1: Simulated Granger and Contemporaneous Networks
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The figure displays realizations of the Erdös–Renyi random graph models used in the simulation exercise. The left picture
displays a directed Erdös–Renyi graph used to generate the autoregressive matrix A while the right picture displays an undirected
Erdös–Renyi random graph used to generate the contemporaneous concentration matrix C.

Figure 2: Simulation Study

The left picture displays the MSE (multiplied by 100) of the nets estimator as a function of the tuning parameter λT for
(from top to bottom) T = 500, 750, 1000. The right picture displays ROC curve of the nets estimator for (from bottom to top)
T = 250, 500, 750, 1000.

36



Figure 3: Autocorrelation and Correlation Heatmaps

The figure displays the heatmap of the sample autocorrelation (left) and sample correlation matrices of the residuals of
regression (16).

Figure 4: S&P 100 Volatility Granger and Contemporaneous Networks
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The figure displays the estimated Granger and contemporaneous networks. The size of the vertices is proportional to their
degree and the colour of the vertices depends on their industry sector.
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Figure 5: Degree and Coefficient Distributions

The top left and bottom left pictures display the histograms of the degree distribution of the Granger and contemporaneous
networks, respectively. The top right and bottom right pictures display the histograms of the estimated non–zero α and ρ
coefficients, respectively.
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A Technical appendix

A.1 Preliminary Definitions

Estimation is conditional on a given value of c = (c11 . . . cnn)′. We define the dimension of the parameters’

space as m = n2p + n(n − 1)/2. We collect the parameters of interest in (11) into the m × 1 vector

θ = (α′,ρ′)′, where α = (α′11 . . .α
′
1p . . .α

′
n1 . . .α

′
np)
′ and α′ik = (αi1k . . . αink) is the i-th row of the VAR

matrix Ak with k = 1, . . . , p. The n(n − 1)/2 × 1 vector ρ contains the stacked partial correlations of the

VAR innovations. Similarly the parameters in (10) are collected into the m × 1 vector φ = (β′,ρ′)′, where

β = (β′11 . . .β
′
1p . . .β

′
n1 . . .β

′
np)
′ and β′ik = (βi1k . . . βink) for i = 1, . . . , n and k = 1, . . . , p. Define as θ0, φ0,

and c0 the true values of the parameters.

With reference to the minimisation problem in (14)-(15), recall that the adaptive lasso weights are

defined as wi = C•/|θ̃T i|, with λGT = CαλT and λCT = CρλT . Hereafter, for simplicity and without loss

of generality we assume that Cα = Cρ = 1. Moreover, we define the sample score and Hessian of the

unconstrained problem as

ST (θ, c) =
1

T

T∑
t=1

∇θ`(θ,yt, c), HT (θ, c) =
1

T

T∑
t=1

∇θθ`(θ,yt, c).

where ∇θ = ∂
∂θ and ∇θθ = ∂

∂θ∂θ′ , and `(θ,yt, c) is the unconstrained loss function defined in (12). The

population counterparts of the above are defined as

S0(θ, c) = E[∇θ`(θ,yt, c)], H0(θ, c) = E[∇θθ`(θ,yt, c)].

For a given symmetric matrix A we denote by µmin(A) and µmax(A) its smallest and largest eigenvalues

respectively. For a generic matrix B, the notation ‖B‖ =
√
µmax(BB′) is used for spectral norm. For a

generic vector b, the notation ‖b‖ =
√∑

i b
2
i indicates the Euclidean norm and ‖b‖∞ = maxi |bi|.

In what follows we use the symbol K to denote a generic positive constant. The value of K needs not

to be the same from line to line. When more than one distinct constant are present in the same equation

we denote them by K0,K1,K2, .... The symbols κ0, κ1, κ2, ... denote universal constants that are unique

throughout the paper.
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A.2 Assumptions

Assumption 1. The n-dimensional random vector process yt is purely non-deterministic, has zero-mean, and

follows the var(p) yt =
∑p
k=1 Akyt−k + εt, where εt∼ i.i.d.(0,C−1). Moreover,

(a) det(I−
∑p
k=1 Akz

k) 6= 0 for any |z| ≤ 1;

(b) there exists a constant c > 0 such that E[|yit|k] ≤ k!ck−2E[y2it] <∞, for any i = 1, . . . , n, t = 1, . . . , T ,

k = 3, 4, . . .;

(c) there exist couples of constants M0,M0 and M1,M1 such that

0 < M0 ≤ µmin (Σ(ω)) ≤ µmax (Σ(ω)) ≤M0 <∞, 0 < M1 ≤ µmin(C0) ≤ µmax(C0) ≤M1 <∞.

where Σ(ω) is the spectral density matrix of yt, defined for ω ∈ [−π, π].

Assumption 2. Define the pre-estimators ĉT , θ̃T = (α̃T , ρ̃T ). Then, for T sufficiently large there exist

constants C1, C2 > 0 such that, for any η > 0, with probability at least 1−O(T−η), we have

max
1≤i≤n

|ĉT ii − c0 ii| ≤ C1

√
log T

T
, max

1≤i≤m
|θ̃T i − θ0 i| ≤ C2

√
log T

T
.

A.3 Lemmas and Conditions

Lemma 1. The parameters θ and φ are related by means of the equations

βijk = αijk −
n∑
l=1
l 6=i

ρil
√
cll
cii
αljk, γij = ρij

√
cjj
cii
, i, j = 1, . . . , n, k = 1, . . . , p.

Moreover, the error terms in (9) and (10) coincide, that is, ei t = ui t.

Lemma 2. For a given value of c, define the n2 × n2 matrix M(ρ; c) = (diag C)−1C⊗ In. Then,

 β

ρ


︸ ︷︷ ︸

φ

=



M(ρ; c) . . . 0 0

...
. . .

...
...

0 . . . M(ρ; c) 0

0 . . . 0 In(n−1)/2


 α

ρ


︸ ︷︷ ︸

θ

.

Lemma 3. Consider the mapping gc : Rm → Rm, such that gc(θ) = φ. Then, under Assumption 1, there

exists a function hc0 : Rm → Rm such that: hc0(gc0(θ0)) = θ0, that is gc0 is invertible in θ0.
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Condition 1. Under Assumption 1, there exist constants L,L such that

0 < L ≤ µmin(H0(θ0, c0)) ≤ µmax(H0(θ0, c0)) ≤ L <∞.

Condition 2. Under Assumption 2, for T sufficiently large there exist constants C3, C4 > 0 such that, for

any η > 0, with probability at least 1−O(T−η), we have

max
1≤i≤m

∣∣ST i(θ0, c0)− ST i(θ0, ĉT )
∣∣ ≤ C3

√
log T

T
,

max
1≤i,j≤m

∣∣HT ij(θ0, c0)−HT ij(θ0, ĉT )
∣∣ ≤ C4

√
log T

T
.

Lemma 4. Under Assumptions 1 and 2 and the same conditions as in Proposition 2, for T sufficiently large

there exist constants κ0, κ1, κ2, κ3 > 0 such that, for any η > 0 and any u in RqT , with probability at least

1−O(T−η), we have

(a)
∥∥ST A(θ0, ĉT )

∥∥ ≤ κ0√qT √ log T

T
;

(b)
∣∣u′ST A(θ0, ĉT )

∣∣ ≤ κ1 ‖u‖√qT √ log T

T
;

(c)
∥∥HT AA(θ0, ĉT )u−H0AA(θ0, c0)u

∥∥ ≤ κ2 ‖u‖ qT √ log T

T
;

(d)
∣∣u′HT AA(θ0, ĉT )u− u′H0AA(θ0, c0)u

∣∣ ≤ κ3 ‖u‖2 qT √ log T

T
.

Lemma 5. For any subset S ⊆ A∪Ac, we have θ̂ST = argminθ:θc
S=0 LT (θ, ĉT ), where LT (θ, ĉT ) is defined in

(15), if and only if the i-th component of the sample score satisfies

STi(θ̂
S
T , ĉT ) = − λT

|θ̃Ti|
sign(θ̂STi), if θ̂STi 6= 0,

|STi(θ̂ST , ĉT )| ≤ λT

|θ̃Ti|
, if θ̂STi = 0.

If the solution is not unique then |STi(θ
S
T , ĉT )| ≤ λT (|θ̃i|)−1 for some specific solution θ

S
T , then since

STi(θ, ĉT ) is continuous in θ, then θ̂i = 0 for all solutions θ̂. Hence, if S = A ∪ Ac, we have the un-

constrained optimisation and θ̂ST = θ̂T , while if S = A, we have the restricted optimisation and θ̂ST = θ̂AT .

Lemma 6. Under Assumptions 1 and 2 and the same conditions in Proposition 2, there exists a constant
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κ4 > 0 such that, for T sufficiently large and any η > 0,

Pr
(
∃θ∗ = argmin

θ:θc
A=0
LT (θ, ĉT ) : θ∗ ∈ D(θ0)

)
≥ 1−O(T−η),

where D(θ0) = {θ : ‖θ − θ0‖ ≤ κ4
√
qTλT }.

Lemma 7. Under Assumptions 1 and 2 and under the same conditions as in Proposition 2, there exists a

constant κ5 > 0 such that, for T sufficiently large and any η > 0

Pr

(
‖ST (θ, ĉT )‖ > √qT

λT
mini∈A |θ0i|

)
≥ 1−O(T−η),

for any θ ∈ S(θ0) where S(θ0) = {θ : ‖θ − θ0‖ ≥ κ5
√
qTλT , θAc = 0}.

Lemma 8. Under Assumptions 1 and 2 and under the same conditions as in Proposition 3, and if n = O(T ζ)

for some ζ > 0, then for T sufficiently large and any η > 0

Pr

(
max
j∈Ac

|ST j(θ̂AT , ĉT )| ≤ λT

maxj∈Ac |θ̃Tj |

)
≥ 1−O(T−η).

A.4 Proofs of Propositions

Proof of proposition 1. Notice that the loss related to (10) is given by

`(φ0; yt, c0) =

n∑
i=1

yi t − p∑
k=1

n∑
j=1

βijk yj t−k −
n∑
h=1
h6=i

ρih
√
c0,hh
c0,ii

yh t


2

. (A-1)

Clearly φ0 is a minimizer of (A-1) (using Assumption 1 for second order conditions):

φ0 = arg min
φ

E[`(φ; yt, c0)]. (A-2)

In order for θ0 to be a minimum, we need to verify that first and second order conditions hold. The first

order conditions are given by6

E[∇θ`(θ0; yt, c0)] = E[∇φ`(φ0; yt, c0)∇θgc0
(θ0)] = E[∇φ`(φ0; yt, c0)]∇θgc0

(θ0) = 0, (A-3)

6Notice that we can exchange integral and differentiation operators as the loss function is such that
` ∈ C∞(Rm).
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since E[∇φ`(φ0; yt, c0)] = 0 because of (A-2). The second order conditions are

E[∇θθ`(θ0; yt, c0)] = E[∇θφ`(φ0; yt, c0)]∇θgc0
(θ0) + E[∇φ`(φ0; yt, c0)]∇θθgc0

(θ0)

= E[∇φφ`(φ0; yt, c0)] (∇θgc0
(θ0))

2
, (A-4)

which we used (A-3). Now, (A-4) is positive definite since the first term is positive definite because of (A-2)

and the second term is positive definite because of Lemma 3. �

Proof of proposition 2. From Lemma 5, we have

‖ST A(θ̂AT )‖∞ ≤ λT max
i∈A

1

|θ̃Ti|
.

Moreover, for any i ∈ A,

1

|θ̃Ti|
=

√
1

θ̃2Ti
≤ 1

|θ0i|
+

√
2

θ30i
|θ̃Ti − θ0i|+ o(|θ̃Ti − θ0i|). (A-5)

Define θ∗0 = mini∈A |θ0i| and notice that θ∗0 > 0 and define also νT =
√
qTλT , therefore νT → 0 as T → ∞.

Using Assumption 2 and (A-5), there exists a constant K > 0 such that for T sufficiently large and for any

η > 0, we have with probability at least 1−O(T−η)

‖ST A(θ̂AT )‖ ≤ √qT ‖ST A(θ̂AT )‖∞ ≤ νT max
i∈A

1

|θ̃Ti|

≤ νT

[
max
i∈A

1

|θ0i|
+K

(
log T

T

)1/4
]

≤ νT
θ∗0

+ νTK

(
log T

T

)1/4

. (A-6)

Notice that the last term on the rhs of (A-6) is o(νT ), thus it can be neglected so that for T sufficiently large

and for any η > 0, we have

Pr

(
‖ST A(θ̂AT )‖ ≤ νT

θ∗0

)
≥ 1−O(T−η). (A-7)

From Lemma 7 we also have that for T sufficiently large and for any η > 0

Pr

(
‖ST A(θ)‖ ≤ νT

θ∗0

)
≥ 1−O(T−η). (A-8)

for any θ such that θAc = 0 and ‖θ− θ0‖ < κ5νT . Therefore, (A-8) implies that inside a disc of radius κ5νT

condition (A-7) is satisfied. In particular, (A-7) is a consequence of the Karush-Kuhn-Tucker condition in
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Lemma 5 for θ̂AT to be a minimum. Moreover, by Lemma 6, such minimum always exists in a disc of radius

κ4νT . Hence, if we define κR = min(κ4, κ5), for T sufficiently large and for any η > 0, we have

Pr
(
‖θ̂AT A − θ0A‖ ≤ κRνT

)
≥ 1−O(T−η). (A-9)

Finally, for any i ∈ A and for T sufficiently large, we have |θ0i| > sT > 2κRνT . Moreover, for any i ∈ A, in

general we have

Pr
(

sign(θ̂AT i) = sign(θ0 i)
)
≥ Pr

(
‖θ̂AT A − θ0A‖ ≤ κRνT , |θ0i| > 2κRνT

)
, (A-10)

which by (A-9) implies sign consistency. This completes the proof. �

Proof of proposition 3. (a) By Proposition 2 and Lemma 7 the non-zero coefficients of θ̂AT satisfy the

Karush-Kuhn-Tucker condition in Lemma 5. Moreover, by Lemma 8 for T sufficiently large and for any η > 0

also the zero coefficients satisfy the Karush-Kuhn-Tucker condition with probability at least 1 − O(T−η).

Therefore, since with probability at least 1 − O(T−η) the restricted estimator θ̂AT A is also a solution of the

unrestricted problem, we proved the existence of a solution of the unrestricted problem. On the other hand,

by Lemma 8 and the Karush-Kuhn-Tucker condition in Lemma 5, with probability at least 1−O(T−η), any

solution of the unrestricted problem is a solution of the restricted problem. That is,

Pr
(
θ̂AT A = θ̂T A

)
≥ 1−O(T−η). (A-11)

As a consequence of (A-11), given the unrestricted estimator, θ̂T A, for T sufficiently large, for any η > 0

and for all j ∈ Ac we have

Pr
(
θ̂T j = 0

)
= Pr

(
θ̂T j = 0

∣∣ θ̂AT A = θ̂T A

)
Pr
(
θ̂AT A = θ̂T A

)
+ Pr

(
θ̂T j = 0

∣∣ θ̂AT A 6= θ̂T A

)
Pr
(
θ̂AT A 6= θ̂T A

)
≥ Pr

(
θ̂T j = 0

∣∣ θ̂AT A = θ̂T A

)
Pr
(
θ̂AT A = θ̂T A

)
= Pr

(
θ̂AT A = θ̂T A

)
≥ 1−O(T−η).

This proves part (a). Part (b) follows directly from Proposition 2 and (A-11). This completes the proof. �
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B Proofs of Complementary Results

Proof of lemma 1. The VAR(p) model (1) has n equations given by

yi t =

p∑
k=1

n∑
j=1

αijk yj t−k + εi t, i = 1, . . . , n, (A-12)

where εit is the i-the element of the vector εt. Then, by substituting (A-12) in (10), we have, for any
i = 1, . . . , n,

yi t =

p∑
k=1

n∑
j=1

βijk yj t−k +

n∑
h=1
h6=i

γih yh t + ei t

=

p∑
k=1

n∑
j=1

βijk yj t−k +

n∑
h=1
h6=i

γih

( p∑
k=1

n∑
j=1

αhjk yj t−k + εh t

)
+ ei t

=

p∑
k=1

n∑
j=1

(
βijk +

n∑
h=1
h 6=i

γihαhjk

)
yj t−k +

n∑
h=1
h6=i

γih εh t + ei t. (A-13)

By comparing the rhs of (A-13) with (A-12) we have

αijk = βijk +

n∑
h=1
h6=i

γihαhjk, i, j = 1, . . . , n, k = 1, . . . , p, (A-14)

εi t =

n∑
h=1
h6=i

γih εh t + ei t, i = 1, . . . , n. (A-15)

and therefore, from (9) we also have ei t = ui t. From (A-15) using Lemma 3 in Peng et al. (2009) we have

γih = ρih
√
chh
cii

, i, h = 1, . . . , n, (A-16)

and clearly when i = h, γih = ρih = 1. By substituting (A-16) into (A-14) we complete the proof. �

Proof of lemma 2. First define the n × n matrix R = In − (diag C)−1/2C (diag C)−1/2. Form the
definition of partial correlation (4), we see that R is a matrix with ρij as generic (i, j) entry whenever i 6= j
and zero otherwise. Now from Lemma 1 we immediately have that, for any k = 1, . . . , p β1k

...
βnk

 =
{

In2 −
[
(diag C)−1/2R(diag C)1/2 ⊗ In

]} α1k

...
αnk


=
{

In2 −
[(

In − (diag C)−1C
)
⊗ In

]} α1k

...
αnk

 = M(ρ; c)

 α1k

...
αnk

 . (A-17)

The statement of the lemma follow straightforwardly from (A-17). �
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Proof of lemma 3. From Lemma 2 we have

gc0(θ0) = φ0 =


M(ρ0; c0) . . . 0 0

...
. . .

...
...

0 . . . M(ρ0; c0) 0
0 . . . 0 In(n−1)/2

θ0.
Then consider the Jacobian ∇θgc0(θ0) which has (i, j)-th entry ∂gc0,i(θ0)/∂θj = ∂φi/∂θj :

∇θgc0
(θ0) =


M(ρ0; c0) . . . 0 ∇ρM(ρ0; c0)(α0,11 . . .α0,n1)′

...
. . .

...
...

0 . . . M(ρ0; c0) ∇ρM(ρ0; c0)(α0,1p . . .α0,np)
′

0 . . . 0 In(n−1)/2

 . (A-18)

Since M(ρ0; c0) is positive definite because of Assumption 1, the Jacobian in θ0 is positive definite too and
the mapping gc0

is invertible in θ0 and this completes the proof. �

Proof of condition 1. The inequality on the lhs is proved in the proof of Proposition 1, while the inequality
on the rhs is proved in condition B1 in the supplementary appendix of Peng et al. (2009). �

Proof of condition 2. This is an immediate consequence of consistency of the pre-estimator ĉT given in
Assumption 2 and the continuous mapping theorem. �

Proof of lemma 4. (a) We begin by noting that the sample averages of the partial derivatives of ` in
(θ′0, c

′
0)′ satisfy a Bernstein–type exponential inequality. The partial derivatives of ` are

∂`(θ0,yt, c0)

∂α0 ijk
= −2ui tyj t−k +

n∑
l=1
l 6=i

2ρil
√
c0 ii
c0 ll

ul tyj t−k,

∂`(θ0,yt, c0)

∂ρij0
= −2

√
c0 ii
c0 jj

ui tεj t − 2

√
c0 jj
c0 ii

uj tεi t.

We only show this for the partial derivatives with respect to the α coefficients. The proof for the partial
derivatives of the ρ coefficients follows analogous steps. In particular, we that show that the averages of the
partial derivatives of the the α coefficients satisfy an exponential inequality that does not depend on n. From
(9) we have Var(ul t) ≤ Var(εl t) for any l = 1, . . . , n, therefore, there exists a constant K > 0 such that

Var

 n∑
l=1
l 6=i

ρil0

√
c0 ii
c0 ll

ul t

 ≤ Var

 n∑
l=1
l 6=i

ρil0

√
c0 ii
c0 ll

εl t

 = Var(εi t) ≤ K, (A-19)

where the last equality is given in (9). Define

AT ijk = − 2

T

T∑
t=1

ui tyj t−k, BT ijk =
2

T

T∑
t=1

 n∑
l=1
l 6=i

ρil
√
c0 ii
c0 ll

ul tyj t−k

 .

By Assumption 1, yi t is a strongly mixing process. Thus, |T−1
∑T
t=1 yi t| satisfy the Bernstein-type expo-

nential inequality in Theorem 1 by Doukhan and Neumann (2007) (see also Theorem 1.4 in Bosq, 1996), i.e.
for any i there exists a constant K0 > 0 such that, for any ε > 0,

Pr

(∣∣∣∣ 1

T

T∑
t=1

yit

∣∣∣∣ > ε

)
≤ exp

{
−K0Tε

2
}
. (A-20)
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Since ui t is i.i.d. by construction, then as a consequence of (A-20) and Remark 2.2 in Dedecker, Doukhan,
Lang, León, Louhichi, and Prieur (2007), there exists also a constant K1 > 0 such that

Pr (|AT ijk| > ε) ≤ exp
{
−K1Tε

2
}
. (A-21)

Moreover, by Assumption 1, for any i = 1, . . . , n we have 0 < c0 ii < ∞ and therefore because of (A-19)
each term in parenthesis in BT ijk has finite variance and zero mean, therefore, using arguments analogous
to those used for (A-21), there exists also a constant K2 > 0 such that

Pr (|BT ijk| > ε) ≤ exp
{
−K2Tε

2
}
.

Therefore, there exists a constant K3 > 0 such that

Pr

∣∣∣∣∣ 1

T

T∑
t=1

∂`(θ0,yt, c0)

∂α0 ijk

∣∣∣∣∣
2

> ε2

 = Pr (|AT ijk +BT ijk| > ε) ≤ Pr (|AT ijk|+ |BT ijk| > ε) ≤ 2 exp
{
−K3Tε

2
}
.

Note that as a consequence there exist a constant K4 > 0 such that

Pr(‖ST A(θ0, c0)‖ > ε) = Pr(‖ST A(θ0, c0)‖2 > ε2) = Pr

(
qT∑
i=1

|ST A i|2 > ε2

)
,

≤ qTPr

(
|ST A i|2 >

ε2

qT

)
= qTPr

(
|ST A i| >

ε
√
qT

)
,

≤ 2qT exp

{
−K4T

ε2

qT

}
.

By setting the rhs of the last expression equal to δ = O(T−η) for η > 0 and solving with respect to ε we get
that for T sufficiently large there exist a constant κ0 such that

ε ≤ κ0
√
qT

√
log T

T
. (A-22)

Then, for T sufficiently large there exist a constant κ0 such that

‖ST A(θ0, c0)‖ < κ0
√
qT

√
log T

T
,

with at least probability 1−O(T−η). Moreover, we have

‖ST A(θ0, ĉT )‖ ≤ ‖ST A(θ0, c0)‖+ ‖ST A(θ0, c0)− ST A(θ0, ĉT )‖ (A-23)

and for T sufficiently large the second term is O(
√

(qT log T )T−1 ) = o(1) by Condition 2. Part (a) follows
by combining (A-22) and (A-23). Part (b) follows from (a) and the Cauchy-Schwarz inequality.

(c) We begin by noting that

‖HT AA(θ0, c0)u−H0AA(θ0, c0)u‖2 ≤ 2‖u‖2‖HT AA(θ0, c0)−H0AA(θ0, c0)‖2,

≤ 2‖u‖2
qT∑
i=1

qT∑
j=1

[HT AA ij(θ0, c0)−H0AA ij(θ0, c0)]
2
.

Next, we focus on showing that the differences

AT ij = HT AA ij(θ0, c0)−H0AA ij(θ0, c0)

satisfy an appropriate Bernstein–type exponential inequality. We begin by noting that the first n2p × n2p
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diagonal block of the Hessian has entries

∂2`(θ0,yt, c0)

∂αij′k′∂αijk
= 2yj t−kyj′ t−k′

1 +

n∑
l=1
l 6=i

ρil0

√
c0 ll
c0 ii

(
ρli0

√
c0 ii
c0 ll
− 1

)
for any j, j′ = 1 . . . n and any k, k′ = 1 . . . p and

∂2`(θ0,yt, c0)

∂αi′j′k′∂αijk
= 2yj t−kyj′ t−k′

(1− ρii
′

0

√
c0 i′i′

c0 ii

)
+

n∑
l=1
l 6=i

ρil0

√
c0 ll
c0 ii

(
ρli0

√
c0 ii
c0 ll
− 1

) ,

for i 6= i′ and any j, j′ = 1 . . . n and any k, k′ = 1 . . . p. The second n(n − 1)/2 × n(n − 1)/2 diagonal block
has entries

∂2`(θ0,yt, c0)

∂ρij′∂ρij
= 2

√
c0 jjc0 ii
c0 iic0 j′j′

εj′ tεj t,

for any i, j, j′ = 1 . . . n with i 6= j, i 6= j′ and j 6= j′. It is straightforward to check that the averages of the
partial derivatives with respect to the ρ coefficients satisfy a Bernstein–type inequality. As far as the partial
derivatives with respect to the α coefficients we need to show that this term does not grow with n. Notice
that by Assumption 1 and from (9), there exists a constant K1 > 0 such that

n∑
l=1
l 6=i

|ρil0 | ≤
n∑
l=1
l 6=i

(ρil0 )2 ≤ Var(εi t)

µmin(C−10 )
= Var(εi t)µmax(C0) < K1. (A-24)

Thus, given (A-24), and since by Assumption 1, we have 0 < c0 ii < ∞ for any i = 1, . . . , n, there exists a
constant K2 > 0 such that∣∣∣∣∣∣∣

n∑
l=1
l 6=i

ρil0

√
c0 ll
c0 ii

(
ρli0

√
c0 ii
c0 ll
− 1

)∣∣∣∣∣∣∣ ≤
n∑
l=1
l 6=i

(ρil0 )2 +

n∑
l=1
l 6=i

|ρil0 |
√
c0 ll
c0 ii

< K2.

By the Cauchy–Schwartz inequality, we have that the mixed partial derivatives with respect to α and ρ also
not grow with n and satisfy a Bernstein–type concentration inequality. Thus, there exists a constant K3 > 0
such that |A1T ijk,i′j′k′ | ≤ K3|yj t−kyj′ t−k′ − E[yj t−kyj′ t−k′ ]| for any (i, j, k) and (i′, j′, k′). Therefore, by
Assumption 1 and the same arguments leading to (A-21) there exists a constant K4 > 0 such that

Pr

 qT∑
i=1

qn∑
j=1

|AT ij |2 ≥ ε2
 ≤ q2TPr

(
|AT ij | ≥

ε

qT

)
≤ 2q2T exp

{
−K4T

ε2

q2T

}
.

By setting the rhs of the last expression equal to δ = O(T−η
′
) for η′ > 0 and solving with respect to ε we

get that for T sufficiently large there exist a constant κ2 > 0 such that

ε ≤ κ2 qT

√
log T

T
.

Finally, for η > 0 and T sufficiently large there exists a constant κ2 such that

‖HT AA(θ0, c0)u−H0AA(θ0, c0)u‖ < κ2‖u‖2qT

√
log T

T
,

with at least probability 1−O(T−η). Part (c) follows as part (a) by using Condition 2 and the conditions in
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the statements of Propositions 2 and 3. Part (d) follows from (c) and the Cauchy-Schwarz inequality. This
completes the proof. �

Proof of lemma 5. See Lemma 2.1 in Bühlmann and van de Geer (2011). �

Proof of lemma 6. Define νT =
√
qTλT , therefore νT → 0 as T →∞. Consider a generic vector u ∈ Rm

such that uAc = 0 and ‖u‖ = C. Define LT (θ, c) = 1
T

∑T
t=1 `(θ,yt, c) and `(θ,yt, c) is the unconstrained

loss function defined in (12). The increment of the sample loss defined in (14)-(15) is

QT (θ0 + νTu) =
1

T

(
LT (θ0 + νtu, ĉT )− LT (θ0, ĉT )

)
=

=
[
LT (θ0 + νtu, ĉT )− LT (θ0, ĉT )

]
− λT

m∑
i=1
i∈A

|θ0i| − |θ0i + νTui|
|θ̃Ti|

≥
[
LT (θ0 + νtu, ĉT )− LT (θ0, ĉT )

]
− λT νT

m∑
i=1
i∈A

|ui|
|θ̃Ti|

. (A-25)

Start from the first term in (A-25). By Lemma 4, for T sufficiently large and for any η > 0, we have with
probability at least 1−O(T−η)

LT (θ0 + νtu, ĉT )− LT (θ0, ĉT ) = νTu′ASTA(θ0, ĉT ) +
1

2
ν2Tu′AHTAA(θ0, ĉT )uA (A-26)

= νTu′ASTA(θ0, ĉT ) +
1

2
ν2Tu′AH0AA(θ0, ĉT )uA +

1

2
ν2Tu′A

(
HTAA(θ0, ĉT )−H0AA(θ0, c0)

)
uA + o(ν2T )

≥− κ1‖uA‖
√
qT

√
log T

T
νT − κ3‖uA‖2qT

√
log T

T
ν2T +

1

2
ν2Tu

′
AH0AA(θ0, c0)uA.

By the conditions given in the statements of Propositions 2 and 3 and since ‖uA‖ = C, for the first and
second term on the rhs of (A-26) we have

− κ1C
√
qT

√
log T

T

λT
λT

νT = ν2T o(1) = o(ν2T ), (A-27)

− κ3C2qT

√
log T

T
ν2T = ν2T o(1) = o(ν2T ), (A-28)

and both terms can be neglected for T sufficiently large. Moreover, by Condition 1, we have

1

2
ν2Tu

′
AH0AA(θ0, c0)uA ≥

1

2
ν2TC

2µmin(H0AA) ≥ 1

2
ν2TC

2L > 0. (A-29)

Then, notice that, by Cauchy-Schwarz inequality,(
m∑
i=1
i∈A

|ui|
|θ̃Ti|

)2

≤ C2
m∑
i=1
i∈A

1

θ̃2Ti
. (A-30)

Moreover, for any i ∈ A,

1

θ̃2Ti
=

1

θ20i
− 2θ0i

θ40i
(θ̃Ti − θ0i) + o((θ̃Ti − θ0i)) ≤

1

θ20i
+

2

θ30i
|θ̃Ti − θ0i|+ o(|θ̃Ti − θ0i|). (A-31)

Define θ20min = mini∈A θ
2
0i and notice that |θ0min| > 0. Then, combining Assumption 2 and (A-31), there

exists a constant K > 0 such that for T sufficiently large and for any η > 0, we have with probability at least
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1−O(T−η)

C2
m∑
i=1
i∈A

1

θ̃2Ti
≤ C2qT
θ20min

+ C2KqT

√
log T

T
. (A-32)

Therefore, using (A-30) and (A-32), for the second term in (A-25), for T sufficiently large and for any η > 0,
with probability at least 1−O(T−η), we have

−λT νT
m∑
i=1
i∈A

|ui|
|θ̃Ti|

≥ −λT νTC
√
qT

[
1

|θ0min|
+
√
K

(
log T

T

)1/4]

≥ −ν2T
C

|θ0min|
+ ν2T

√
K

(
log T

T

)1/4

, (A-33)

and notice that the last term is o(ν2T ), thus it can be neglected for T sufficiently large. Then, by substituting
(A-26) and (A-33) in (A-25), and using (A-27), (A-28), and (A-29), we have, for T sufficiently large and for
any η > 0,

Pr

(
QT (θ0 + νTu) ≥ 1

2
ν2TC

2L− C

|θ0min|
ν2T = ν2TC

(
L

2
C − 1

|θ0min|

))
≥ 1−O(T−η).

Thus, if we choose C = 2/(L|θ0min|) + ε, for any ε > 0, then for T sufficiently large and for any η > 0

Pr

 inf
u:uAc=0
‖u‖=C

QT (θ0 + νTu) > 0

 = Pr

 inf
u:uAc=0
‖u‖=C

LT (θ0 + νTu, ĉT ) > LT (θ0, ĉT )

 ≥ 1−O(T−η),

which means that there exists a local minimum for the restricted problem within the disc D(θ0) = {θ :
‖θ − θ0‖ ≤ νTC}, with probability at least 1−O(T−η). By choosing κ4 = C, we complete the proof. �

Proof of lemma 7. Define νT =
√
qTλT , therefore νT → 0 as T →∞. Then, any θ ∈ S(θ0) can be written

as θ = θ0 + νTu, where uAc = 0, ‖u‖ ≥ κ5, and ‖u‖ ≤ C <∞. For any θ ∈ S(θ0), we can write

ST A(θ, ĉT ) = ST A(θ0, ĉT ) + νTHT AA(θ0, ĉT )u

= ST A(θ0, ĉT ) + νT

(
HT AA(θ0, ĉT )−H0AA(θ0, c0)

)
u + νTH0AA(θ0, c0)u + o(νT ).

Thus, by Lemma 4, for T sufficiently large and for any η > 0, we have, with probability at least 1−O(T−η),

‖ST A(θ, ĉT )‖ ≥ − κ0
√
qT

√
log T

T
− κ2‖u‖νT qT

√
log T

T
+ νT ‖H0AA(θ0, c0)u‖.

The first and second term on the rhs of the last expression are both o(νT ). Then, using Condition 1, for T
sufficiently large and for any η > 0, with probability at least 1−O(T−η) we have

‖ST A(θ, ĉT )‖ ≥ νT ‖H0AA(θ0, c0)u‖ ≥ νT Lκ5.

Define θ∗0 = mini∈A |θ0i| and notice that θ∗0 > 0. By choosing κ5 = 1/(Lθ∗0) + ε for any ε > 0, we complete
the proof. �

Proof of lemma 8. In the following define vT = (θ̂AT − θ0). For any j ∈ Ac we have

ST j(θ̂
A
T , ĉT ) = ST j(θ0, ĉT ) +HT j(θ0, ĉT )vT + o(‖vT ‖)

= ST j(θ0, ĉT )︸ ︷︷ ︸
A1T j

+H0 j(θ0, c0)vT︸ ︷︷ ︸
A2T j

+ [HT j(θ0, ĉT )−H0 j(θ0, c0)] vT︸ ︷︷ ︸
A3T j

+o(‖vT ‖). (A-34)
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Start from the first term on the rhs of (A-34). By an argument analogous to the proof of Lemma 4 (a) we
have that for T sufficiently large and for any η′ > 0 there exists a constant K1 > 0 such that

Pr

(
|A1T j | ≤ K1

√
log T

T

)
≥ 1−O(T−η

′
). (A-35)

For the second term on the rhs of (A-34) from Condition 1 we have

|A2T j | ≤ ‖H0 j(θ0, c0)‖ ‖vT ‖ ≤ µmax(H0(θ0, c0)) ‖vT ‖ ≤ L ‖vT ‖.

Therefore, if we define K2 = κRL, by Proposition 2 we have that for T sufficiently large and for any η′ > 0

Pr (|A2T j | ≤ K2
√
qTλT ) ≥ 1−O(T−η

′
). (A-36)

For the third term on the rhs of (A-34), we have

|A3T j | ≤ ‖ [HT j(θ0, ĉT )−H0 j(θ0, c0)] ‖ ‖vT ‖.

Then, using an argument similar to the proof of Lemma 4 (c) and by Proposition 2 and by defining K3 = κ2κR
we have that for T sufficiently large and for any η′ > 0

Pr

(
|A3T j | ≤ K3qTλT

√
log T

T

)
≥ 1−O(T−η

′
). (A-37)

Moreover, by Assumption 2 there exists a constant K4 > 0 such that for T sufficiently large and for any
η′ > 0 we have

Pr

(
1

maxj∈Ac |θ̃Tj |
> K4

√
T

log T

)
≥ 1−O(T−η

′
). (A-38)

From (A-38) and (A-34) we have

Pr

(
|ST j(θ̂AT , ĉT )| ≤ λT

maxj∈Ac |θ̃Tj |

)
≥ Pr

(
|A1T j |+ |A2T j |+ |A3T j | ≤

λT

maxj∈Ac |θ̃Tj |

)

≥ Pr

(
|A1T j |+ |A2T j |+ |A3T j | ≤ K4λT

√
T

log T

)
. (A-39)

Notice that, as T →∞, we have

λT

√
T

log T
→∞, √

qT
λT
T
→ 0, qT

λT
T

√
log T

T
→ 0,

√
log T

T
→ 0. (A-40)

where the first three conditions are assumed in Proposition 3 while the last one is trivial.

Finally, consider the complementary of (A-39), then, by combining (A-35)-(A-37) with (A-40), we have that
for T sufficiently large and for any η′ > 0

Pr

(
|A1T j |+ |A2T j |+ |A3T j | ≥ K4λT

√
T

log T

)
≤

3∑
k=1

Pr

(
|AkT j | ≥ K4λT

√
T

log T

)
= O(T−η

′
),

which implies that

Pr

(
|ST j(θ̂AT , ĉT )| ≤ λT

maxj∈Ac |θ̃Tj |

)
≥ 1−O(T−η

′
). (A-41)
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Given n = O(T ζ), define η′ = η + ζ, then for T sufficiently large and for any η > 0, from (A-41) we have

Pr

(
max
j∈Ac

|ST j(θ̂AT , ĉT )| ≥ λT

maxj∈Ac |θ̃Tj |

)
≤ nPr

(
|ST j(θ̂AT , ĉT )| ≥ λT

maxj∈Ac |θ̃Tj |

)
= O(T−η).

By considering the complementary event we complete the proof. �
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